Fata_Morgana
Вскрытие покажет!
19.01.2008 в 18:57
Пишет Amicus Plato:

Наивная теория множеств Георга Кантора
Георг Фердинанд Людвиг Филипп Кантор (по моему и, думаю, не только по моему мнению) — один из величайших математиков за всю историю человечества. Пафосно, может быть, чересчур, но зато искренне ))



Теорию множеств (возможно, немножко не в том виде, в котором мы знаем ее сейчас), основал именно он.
В это трудно поверить, но он первый ввел в математике понятие множества и дал ему неформальное определение. И случилось это во второй половине XIX века.
Раньше множествами в математике не оперировали!
Та теория множеств, которую выдвинул Кантор впоследствии получила название Наивной теории множеств.

Понятие множества сейчас входит в число так называемых первичных, неопределяемых, понятий. Таких, как, предположим, точка в математике или информация в теории информации.
Сам Кантор определял множество следующим образом: «множество есть многое, мыслимое как единое».

Кантор разработал программу стандартизации математики, в основу которой как раз было положено понятие множества. Любой математический объект должен был рассматриваться как «множество».
Например, натуральный ряд представляет собой множество, удовлетворяющее аксиомам Пеано. Каждое натуральное число в отдельности — тоже множество, но состоящее всего из одного элемента.

Сам термин "теория множеств" был введен в математику позднее. Кантор же называл свою теорию "Mengenlehre" — учение о множествах.

Появление Mengenlehre вызвало нешуточные битвы в математических кругах. Учение имело как горячих поклонников (среди выдающихся математиков того времени), так и ярых противников.

Но в своем первоначальном виде теория оказалась нежизнеспособна.

Вот что написано в Википедии:
Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

Виновником провала стал не кто иной как Бертран Рассел.
Однако теория эта успела безраздельно завладеть умами современников.

Вот что пишет о Канторе и его Mengenlehre Давид Гильберт (о котором я уже здесь рассказывала):

Никто и никогда не изгонит нас из его рая.
(с) Давид Гильберт. В защиту канторовой теории множеств.

URL записи

@темы: математика, теория множеств